Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision

Ayush Tewari, Tianwei Yin, George Cazenavette, Semon Rezchikov, Joshua B. Tenenbaum, Frédo Durand, William T. Freeman, Vincent Sitzmann

Research output: Contribution to journalConference articlepeer-review

9 Scopus citations

Abstract

Denoising diffusion models have emerged as a powerful class of generative models capable of capturing the distributions of complex, real-world signals. However, current approaches can only model distributions for which training samples are directly accessible, which is not the case in many real-world tasks. In inverse graphics, for instance, we seek to sample from a distribution over 3D scenes consistent with an image but do not have access to ground-truth 3D scenes, only 2D images. We present a new class of conditional denoising diffusion probabilistic models that learn to sample from distributions of signals that are never observed directly, but instead are only measured through a known differentiable forward model that generates partial observations of the unknown signal. To accomplish this, we directly integrate the forward model into the denoising process. At test time, our approach enables us to sample from the distribution over underlying signals consistent with some partial observation. We demonstrate the efficacy of our approach on three challenging computer vision tasks. For instance, in inverse graphics, we demonstrate that our model in combination with a 3D-structured conditioning method enables us to directly sample from the distribution of 3D scenes consistent with a single 2D input image.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Externally publishedYes
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision'. Together they form a unique fingerprint.

Cite this