Diffusion-controlled reactions: Mathematical formulation, variational principles, and rigorous bounds

Jacob Rubinstein, S. Torquato

Research output: Contribution to journalArticlepeer-review

90 Scopus citations

Abstract

This paper is concerned with the problem of predicting the effective rate constant k associated with diffusion-controlled reactions in media composed of static and reactive traps (sinks) which are generally distributed randomly throughout a region containing reactive particles. The effective equation for diffusion-controlled reactions is derived using the method of homogenization. This leads to a rigorous definition of k. General variational principles are then formulated to obtain rigorous upper and lower bounds on k. These variational principles are applied by evaluating them for three different types of admissible fields. The upper and lower bounds which result are computed for both random and periodic arrays of equisized spherical sinks.

Original languageEnglish (US)
Pages (from-to)6372-6380
Number of pages9
JournalThe Journal of chemical physics
Volume88
Issue number10
DOIs
StatePublished - 1988
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Diffusion-controlled reactions: Mathematical formulation, variational principles, and rigorous bounds'. Together they form a unique fingerprint.

Cite this