Abstract
Water absorption, membrane swelling, and self-diffusivity of water in 1100 equivalent weight Nafion were measured as functions of temperature and water activity. Free volume per water at 80 °C, determined from water uptake and volume expansion data, decreases with water content in the membrane from 12 cm3/mol at λ = 0.5 H2O/SO3 to 1.5 cm3/mol at λ = 4. The change in free volume with water content displays a transition at λ = 4. Limiting water self-diffusivity in Nafion was determined by pulsed gradient spin echo NMR at long delay times. The limiting self-diffusivity increases exponentially with water activity; the rate of increase of diffusivity with water content shows a transition at λ = 4. The tortuosity of the hydrophilic domains in Nafion decreased from 20 at low membrane water activity to 3 at λ = 4. It suggested a change in the connectivity of the hydrophilic domains absorbed water occurs at λ ∼ 4. The diffusivity results were employed to separate the contributions of diffusional and interfacial resistance for water transport across Nafion membranes, which enabled the determination of the interfacial mass transport coefficients. A diffusion model was developed which incorporated activity-dependent diffusivity, volume expansion, and the interfacial resistance, and was used to resolve the water activity profiles in the membrane.
Original language | English (US) |
---|---|
Pages (from-to) | 2717-2727 |
Number of pages | 11 |
Journal | Journal of Physical Chemistry B |
Volume | 115 |
Issue number | 12 |
DOIs | |
State | Published - Mar 31 2011 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry