Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model

Daniele Bianchi, Charles Stock, Eric D. Galbraith, Jorge Louis Sarmiento

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

Diel vertical migration (DVM) of zooplankton and micronekton is widespread in the ocean and forms a fundamental component of the biological pump, but is generally overlooked in global models of the Earth system. We develop a parameterization of DVM in the ocean and integrate it with a size-structured NPZD model. We assess the model's ability to recreate ecosystem and DVM patterns at three well-observed Pacific sites, ALOHA, K2, and EQPAC, and use it to estimate the impact of DVM on marine ecosystems and biogeochemical dynamics. Our model includes the following: (1) a representation of migration dynamics in response to food availability and light intensity; (2) a representation of the digestive and metabolic processes that decouple zooplankton feeding from excretion, egestion, and respiration; and (3) a light-dependent parameterization of visual predation on zooplankton. The model captures the first-order patterns in plankton biomass and productivity across the biomes, including the biomass of migrating organisms. We estimate that realistic migratory populations sustain active fluxes to the mesopelagic zone equivalent to between 15% and 40% of the particle export and contribute up to half of the total respiration within the layers affected by migration. The localized active transport has important consequences for the cycling of oxygen, nutrients, and carbon. We highlight the importance of decoupling zooplankton feeding and respiration and excretion with depth for capturing the impact of migration on the redistribution of carbon and nutrients in the upper ocean.

Original languageEnglish (US)
Pages (from-to)478-491
Number of pages14
JournalGlobal Biogeochemical Cycles
Volume27
Issue number2
DOIs
StatePublished - Jun 2013

All Science Journal Classification (ASJC) codes

  • Global and Planetary Change
  • Environmental Chemistry
  • General Environmental Science
  • Atmospheric Science

Keywords

  • diel vertical migration
  • ecosystem model
  • ocean biogeochemistry
  • zooplankton

Fingerprint

Dive into the research topics of 'Diel vertical migration: Ecological controls and impacts on the biological pump in a one-dimensional ocean model'. Together they form a unique fingerprint.

Cite this