DICHOTOMY OF EARLY AND LATE PHASE IMPLICIT BIASES CAN PROVABLY INDUCE GROKKING

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S. Du, Jason D. Lee, Wei Hu

Research output: Contribution to conferencePaperpeer-review

2 Scopus citations

Abstract

Recent work by Power et al. (2022) highlighted a surprising “grokking” phenomenon in learning arithmetic tasks: a neural net first “memorizes” the training set, resulting in perfect training accuracy but near-random test accuracy, and after training for sufficiently longer, it suddenly transitions to perfect test accuracy. This paper studies the grokking phenomenon in theoretical setups and shows that it can be induced by a dichotomy of early and late phase implicit biases. Specifically, when training homogeneous neural nets with large initialization and small weight decay on both classification and regression tasks, we prove that the training process gets trapped at a solution corresponding to a kernel predictor for a long time, and then a very sharp transition to min-norm/max-margin predictors occurs, leading to a dramatic change in test accuracy.

Original languageEnglish (US)
StatePublished - 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: May 7 2024May 11 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period5/7/245/11/24

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'DICHOTOMY OF EARLY AND LATE PHASE IMPLICIT BIASES CAN PROVABLY INDUCE GROKKING'. Together they form a unique fingerprint.

Cite this