## Abstract

This note aims to provide an entrée to two developments in two-dimensional topological gravity - that is, intersection theory on the moduli space of Riemann surfaces - that have not yet become well-known among physicists. A little over a decade ago, Mirzakhani discovered [1, 2] an elegant new proof of the formulas that result from the relationship between topological gravity and matrix models of two-dimensional gravity. Here we will give a very partial introduction to that work, which hopefully will also serve as a modest tribute to the memory of a brilliant mathematical pioneer. More recently, Pandharipande, Solomon, and Tessler [3] (with further developments in [4-6]) generalized intersection theory on moduli space to the case of Riemann surfaces with boundary, leading to generalizations of the familiar KdV and Virasoro formulas. Though the existence of such a generalization appears natural from the matrix model viewpoint - it corresponds to adding vector degrees of freedom to the matrix model - constructing this generalization is not straightforward. We will give some idea of the unexpected way that the difficulties were resolved.

Original language | English (US) |
---|---|

Title of host publication | Topology and Physics |

Publisher | World Scientific Publishing Co. |

Pages | 17-80 |

Number of pages | 64 |

ISBN (Electronic) | 9789813278677 |

DOIs | |

State | Published - Jan 1 2019 |

Externally published | Yes |

## All Science Journal Classification (ASJC) codes

- General Physics and Astronomy
- General Mathematics