Development of front-end electronics for Belle SVD upgrades

H. Aihara, M. Hazumi, H. Ishino, J. Kaneko, Y. Li, D. Marlow, S. Mikkelsen, D. Nguyen, E. Nygaard, H. Tajima, J. Talebi, G. Varner, H. Yamamoto, M. Yokoyama

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

Essential to the ongoing improvement in the vertexing capability of the Belle detector at the KEK-B Factory are evolutionary enhancements to the Silicon Vertex Detector (SVD). A critical component of this improvement has been the refinement of the successful Viking Architecture (VA) front-end electronics for adaptation to the high-luminosity, B-Factory environment. Specifically, improvements have focussed on the areas of improving radiation hardness and reducing the minimum shaping time. The adjustments allow for a substantially longer SVD lifetime at peak performance and the minimization of background occupancy, respectively. In addition, to increase the strip yield of our sensors, we have implemented two different techniques to allow for DC coupling of the VA chips. Results are reported on the success of this R&D program.

Original languageEnglish (US)
Pages9/213-9/216
StatePublished - 2000
Event2000 IEEE Nuclear Science Symposium Conference Record - Lyon, France
Duration: Oct 15 2000Oct 20 2000

Other

Other2000 IEEE Nuclear Science Symposium Conference Record
Country/TerritoryFrance
CityLyon
Period10/15/0010/20/00

All Science Journal Classification (ASJC) codes

  • Radiation
  • Nuclear and High Energy Physics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Development of front-end electronics for Belle SVD upgrades'. Together they form a unique fingerprint.

Cite this