Development differentially sculpts receptive fields across early and high-level human visual cortex

Jesse Gomez, Vaidehi Natu, Brianna Jeska, Michael Barnett, Kalanit Grill-Spector

Research output: Contribution to journalArticlepeer-review

76 Scopus citations

Abstract

Receptive fields (RFs) processing information in restricted parts of the visual field are a key property of visual system neurons. However, how RFs develop in humans is unknown. Using fMRI and population receptive field (pRF) modeling in children and adults, we determine where and how pRFs develop across the ventral visual stream. Here we report that pRF properties in visual field maps, from the first visual area, V1, through the first ventro-occipital area, VO1, are adult-like by age 5. However, pRF properties in face-selective and character-selective regions develop into adulthood, increasing the foveal coverage bias for faces in the right hemisphere and words in the left hemisphere. Eye-tracking indicates that pRF changes are related to changing fixation patterns on words and faces across development. These findings suggest a link between face and word viewing behavior and the differential development of pRFs across visual cortex, potentially due to competition on foveal coverage.

Original languageEnglish (US)
Article number788
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Development differentially sculpts receptive fields across early and high-level human visual cortex'. Together they form a unique fingerprint.

Cite this