Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles

John E. Martin, Andrew A. Herzing, Weile Yan, Xiao Qin Li, Bruce E. Koel, Christopher J. Kiely, Wei Xian Zhang

Research output: Contribution to journalArticle

162 Scopus citations

Abstract

Zerovalent iron (nZVI) nanoparticles have long been used in the electronic and chemical industries due to their magnetic and catalytic properties. Increasingly, applications of nZVI have also been reported in environmental engineering because of their ability to degrade a wide variety of toxic pollutants in soil and water. It is generally assumed that nZVI has a core-shell morphology with zerovalent iron as the core and iron oxide/hydroxide in the shell. This study presents a detailed characterization of the nZVI shell thickness using three independent methods. High-resolution transmission electron microscopy analysis provides direct evidence of the core-shell structure and indicates that the shell thickness of fresh nZVI was predominantly in the range of 2-4 nm. The shell thickness was also determined from high-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis through comparison of the relative integrated intensities of metallic and oxidized iron with a geometric correction applied to account for the curved overlayer. The XPS analysis yielded an average shell thickness in the range of 2.3-2.8 nm. Finally, complete oxidation reaction of the nZVI particles by Cu(II) was used as an indication of the zerovalent iron content of the particles, and these observations further correlate the chemical reactivity of the particles and their shell thicknesses. The three methods yielded remarkably similar results, providing a reliable determination of the shell thickness, which fills an essential gap in our knowledge about the nZVI structure. The methods presented in this work can also be applied to the study of the aging process of nZVI and may also prove useful for the measurement and characterization of other metallic nanoparticles.

Original languageEnglish (US)
Pages (from-to)4329-4334
Number of pages6
JournalLangmuir
Volume24
Issue number8
DOIs
StatePublished - Apr 15 2008

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles'. Together they form a unique fingerprint.

  • Cite this

    Martin, J. E., Herzing, A. A., Yan, W., Li, X. Q., Koel, B. E., Kiely, C. J., & Zhang, W. X. (2008). Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir, 24(8), 4329-4334. https://doi.org/10.1021/la703689k