Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon-air mixtures

C. L. Tang, Z. H. Huang, C. K. Law

Research output: Contribution to journalArticlepeer-review

149 Scopus citations

Abstract

The stretch-affected propagation speeds of expanding spherical flames of n-butane-air mixtures with hydrogen addition were measured at atmospheric pressure and subsequently processed through a nonlinear regression analysis to yield the stretch-free laminar flame speeds. Based on a hydrogen addition parameter (RH) and an effective fuel equivalence ratio (φF), these laminar flame speeds were found to increase almost linearly with RH, for φF between 0.6 and 1.4 and RH from 0 to 0.5, with the slope of the variation assuming a minimum around stoichiometry. These experimental results also agree well with computed values using a detailed reaction mechanism. Furthermore, a mechanistic investigation aided by sensitivity analysis identified that kinetic effects through the global activation energy, followed by thermal effects through the adiabatic flame temperature, have the most influence on the increase in the flame speeds and the associated linear variation with RH due to hydrogen addition. Nonequidiffusion effects due to the high mobility of hydrogen, through the global Lewis number, have the least influence. Further calculations for methane, ethene, and propane as the fuel showed similar behavior, leading to possible generalization of the phenomena and correlation.

Original languageEnglish (US)
Pages (from-to)921-928
Number of pages8
JournalProceedings of the Combustion Institute
Volume33
Issue number1
DOIs
StatePublished - 2011

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Mechanical Engineering
  • Physical and Theoretical Chemistry

Keywords

  • Hydrogen addition
  • Laminar flame speed

Fingerprint

Dive into the research topics of 'Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon-air mixtures'. Together they form a unique fingerprint.

Cite this