Abstract
We present the discovery and characterization of a new transiting planet from Campaign 17 of the Kepler extended mission K2. The planet K2-292 b is a warm sub-Neptune on a 17 day orbit around a bright (V = 9.9 mag) solar-like G3 V star with a mass and radius of M∗ = 1.00 ± 0.03 MȮ and R∗ = 1.09 ± 0.03 RȮ, respectively. We modeled simultaneously the K2 photometry and CARMENES spectroscopic data and derived a radius of Rp=2.63-0.10+0.12 RȮ and mass of Mp=24.5-4.4+4.4 MȮ, yielding a mean density of ρp=7.4-1.5+1.6 g cm-3, which makes it one of the densest sub-Neptunian planets known to date. We also detected a linear trend in the radial velocities of K2-292 (γRV =-0.40-0.07+0.07 m s-1 d-1) that suggests a long-period companion with a minimum mass on the order of 33 MȮ. If confirmed, it would support a formation scenario of K2-292 b by migration caused by Kozai-Lidov oscillations.
Original language | English (US) |
---|---|
Article number | A114 |
Journal | Astronomy and Astrophysics |
Volume | 623 |
DOIs | |
State | Published - Mar 1 2019 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Planetary systems
- Stars: individual: HD 119130
- Stars: individual: K2-292
- Techniques: high angular resolution
- Techniques: photometric
- Techniques: radial velocities