Design of internally cooled trailing edge at engine similar conditions- A conjugate heat transfer problem

Waseem Siddique, Torsten H. Fransson, Lamyaa A. El-Gabry

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Gas turbines are operated at elevated temperatures as the thermal efficiency of the gas turbine is directly linked to the turbine inlet gas temperature. The different regions of the turbine blade require different means of cooling. This paper presents different designs of the two-pass trapezoidal channel which represents the trailing edge of a real engine. Engine similar boundary conditions are applied and conjugate heat transfer method is used to predict the wall temperatures. The aim is to design a cooling channel that through use of steam can reduce wall temperatures to below a target value while maintaining minimal pressure drop. The variations in design of a smooth two-pass channel were made to achieve the design target. These variations included installation of ribs at the walls, tapered divider wall, tilted divider wall and L-shaped divider wall to promote fluid impingement on the trailing wall. The results suggest that a channel with staggered ribs at the outlet pass, a tilted divider wall and impingement at the corner is the best arrangement for reducing wall temperatures below the target value; however, it has low overall aerothermal performance due to high pressure losses. A similar channel without impingement can yield acceptable results if a thermal barrier coating is applied or if a small corner of the tip-trailing edge is truncated to reduce material volume. This modification though can improve the thermal performance of the channel, is to result in higher profile and aerodynamics losses.

Original languageEnglish (US)
Title of host publicationASME Turbo Expo 2012
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2012
Pages1357-1372
Number of pages16
EditionPARTS A AND B
DOIs
StatePublished - 2012
EventASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012 - Copenhagen, Denmark
Duration: Jun 11 2012Jun 15 2012

Publication series

NameProceedings of the ASME Turbo Expo
NumberPARTS A AND B
Volume4

Conference

ConferenceASME Turbo Expo 2012: Turbine Technical Conference and Exposition, GT 2012
Country/TerritoryDenmark
CityCopenhagen
Period6/11/126/15/12

All Science Journal Classification (ASJC) codes

  • General Engineering

Fingerprint

Dive into the research topics of 'Design of internally cooled trailing edge at engine similar conditions- A conjugate heat transfer problem'. Together they form a unique fingerprint.

Cite this