TY - GEN
T1 - Design of a passively morphing ornithopter wing using a novel compliant spine
AU - Tummala, Yashwanth
AU - Frecker, Mary
AU - Wissa, Aimy
AU - Hubbard, James E.
PY - 2010
Y1 - 2010
N2 - A new scheme to design morphing ornithopter wings using a passive compliant spine is presented in this paper. The objective of this work is to optimize steady level flight performance of an ornithopter by passively implementing the Continuous Vortex Gait (CVG) which requires bending, twist and sweep coupling during the upstroke. An optimization problem is formulated to design a compliant spine for pre-specified bending, sweep, and twist deflections. As a first step to achieving these 3 DOF kinematics, a 1 DOF compliant spine is considered to produce a specified bending deflection during the upstroke for drag reduction while remaining stiff during the downstroke for increased lift. The effect of the relevant geometric design parameters, namely contact gap, angle, and hinge geometry, are considered and optimized to achieve the aforementioned kinematics for both single and multiple joints, which make up a compliant spine. Results presented include the spine design optimization procedure, as well as a complete analysis for a 1DOF compliant spine to illustrate the efficacy of the methodology. This compliant spine design methodology and optimization procedure will be used, in the future, to design the 3-DOF compliant spine for the passively morphing ornithopter.
AB - A new scheme to design morphing ornithopter wings using a passive compliant spine is presented in this paper. The objective of this work is to optimize steady level flight performance of an ornithopter by passively implementing the Continuous Vortex Gait (CVG) which requires bending, twist and sweep coupling during the upstroke. An optimization problem is formulated to design a compliant spine for pre-specified bending, sweep, and twist deflections. As a first step to achieving these 3 DOF kinematics, a 1 DOF compliant spine is considered to produce a specified bending deflection during the upstroke for drag reduction while remaining stiff during the downstroke for increased lift. The effect of the relevant geometric design parameters, namely contact gap, angle, and hinge geometry, are considered and optimized to achieve the aforementioned kinematics for both single and multiple joints, which make up a compliant spine. Results presented include the spine design optimization procedure, as well as a complete analysis for a 1DOF compliant spine to illustrate the efficacy of the methodology. This compliant spine design methodology and optimization procedure will be used, in the future, to design the 3-DOF compliant spine for the passively morphing ornithopter.
UR - http://www.scopus.com/inward/record.url?scp=84859547023&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84859547023&partnerID=8YFLogxK
U2 - 10.1115/smasis2010-3637
DO - 10.1115/smasis2010-3637
M3 - Conference contribution
AN - SCOPUS:84859547023
SN - 9780791844151
T3 - ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010
SP - 703
EP - 713
BT - ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010
PB - American Society of Mechanical Engineers
T2 - ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010
Y2 - 28 September 2010 through 1 October 2010
ER -