Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

Johannes Hubmayr, Jason E. Austermann, James A. Beall, Daniel T. Becker, Steven J. Benton, A. Stevie Bergman, J. Richard Bond, Sean Bryan, Shannon M. Duff, Adri J. Duivenvoorden, H. K. Eriksen, Jeffrey P. Filippini, A. Fraisse, Mathew Galloway, Anne E. Gambrel, K. Ganga, Arpi L. Grigorian, Riccardo Gualtieri, Jon E. Gudmundsson, John W. HartleyM. Halpern, Gene C. Hilton, William C. Jones, Jeffrey J. McMahon, Lorenzo Moncelsi, Johanna M. Nagy, C. B. Netterfield, Benjamin Osherson, Ivan Padilla, Alexandra S. Rahlin, B. Racine, John Ruhl, T. M. Rudd, J. A. Shariff, J. D. Soler, Xue Song, Joel N. Ullom, Jeff Van Lanen, Michael R. Vissers, I. K. Wehus, Shyang Wen, D. V. Wiebe, Edward Young

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter spider. A primary science goal of spider is to measure the large-scale B-mode polarization of the cosmic microwave background (cmb) in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16x16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The spider receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7° FHWM Gaussian-shaped beams with <1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 x 10-17 W/√Hz, consistent with the phonon noise prediction.

Original languageEnglish (US)
Title of host publicationMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII
EditorsJonas Zmuidzinas, Wayne S. Holland
PublisherSPIE
ISBN (Electronic)9781510602076
DOIs
StatePublished - 2016
EventMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII - Edinburgh, United Kingdom
Duration: Jun 28 2016Jul 1 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9914
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherMillimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII
CountryUnited Kingdom
CityEdinburgh
Period6/28/167/1/16

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Keywords

  • Bolometer
  • CMB
  • Feedhorn
  • Polarimetry
  • TES

Fingerprint Dive into the research topics of 'Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER'. Together they form a unique fingerprint.

  • Cite this

    Hubmayr, J., Austermann, J. E., Beall, J. A., Becker, D. T., Benton, S. J., Bergman, A. S., Bond, J. R., Bryan, S., Duff, S. M., Duivenvoorden, A. J., Eriksen, H. K., Filippini, J. P., Fraisse, A., Galloway, M., Gambrel, A. E., Ganga, K., Grigorian, A. L., Gualtieri, R., Gudmundsson, J. E., ... Young, E. (2016). Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER. In J. Zmuidzinas, & W. S. Holland (Eds.), Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII [99140V] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 9914). SPIE. https://doi.org/10.1117/12.2231896