Dependent multinomial models made easy: Stick breaking with the Pólya-gamma augmentation

Scott W. Linderman, Matthew J. Johnson, Ryan P. Adams

Research output: Contribution to journalConference articlepeer-review

52 Scopus citations

Abstract

Many practical modeling problems involve discrete data that are best represented as draws from multinomial or categorical distributions. For example, nucleotides in a DNA sequence, children's names in a given state and year, and text documents are all commonly modeled with multinomial distributions. In all of these cases, we expect some form of dependency between the draws: the nucleotide at one position in the DNA strand may depend on the preceding nucleotides, children's names are highly correlated from year to year, and topics in text may be correlated and dynamic. These dependencies are not naturally captured by the typical Dirichlet-multinomial formulation. Here, we leverage a logistic stick-breaking representation and recent innovations in Pólya-gamma augmentation to reformulate the multinomial distribution in terms of latent variables with jointly Gaussian likelihoods, enabling us to take advantage of a host of Bayesian inference techniques for Gaussian models with minimal overhead.

Original languageEnglish (US)
Pages (from-to)3456-3464
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2015-January
StatePublished - 2015
Externally publishedYes
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Dependent multinomial models made easy: Stick breaking with the Pólya-gamma augmentation'. Together they form a unique fingerprint.

Cite this