Densely connected convolutional networks

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, Kilian Q. Weinberger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

32008 Scopus citations

Abstract

Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections - one between each layer and its subsequent layer - our network has L(L2+1) direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2261-2269
Number of pages9
ISBN (Electronic)9781538604571
DOIs
StatePublished - Nov 6 2017
Externally publishedYes
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period7/21/177/26/17

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Densely connected convolutional networks'. Together they form a unique fingerprint.

Cite this