TY - JOUR
T1 - Defining and identifying three-dimensional magnetic reconnection
AU - Dorelli, John C.
AU - Bhattacharjee, A.
N1 - Funding Information:
The authors would like to acknowledge the following sources of financial support: DOE Grant No. , NFS Grant Nos. and , and NASA Grant Nos. and .
PY - 2008
Y1 - 2008
N2 - Magnetic reconnection is thought to be the primary mode by which the solar wind couples to the terrestrial magnetosphere, driving phenomena such as magnetic storms and aurorae. While the theory of two-dimensional reconnection is well developed and has been applied with great success to axisymmetric and toroidal systems such as laboratory plasma experiments and fusion devices, it is difficult to justify the application of two-dimensional theory to nontoroidal plasma systems such as Earth's magnetosphere. Unfortunately, the theory of three-dimensional magnetic reconnection is much less well developed, and even defining magnetic reconnection has turned out to be controversial. In this paper, recent progress in the use of magnetohydrodynamics (MHD) to address the physics of three-dimensional reconnection in Earth's magnetosphere is reviewed. The paper consists of two parts. In the first part, various definitions of three-dimensional reconnection are reviewed, with the goal of mapping these definitions to sets of physical phenomena that have been identified as "reconnection" in various contexts. In the second part of the paper, MHD simulation results for the magnetosphere are presented, and two qualitatively distinct types of reconnection phenomena are identified: (1) Steady separator reconnection under generic northward interplanetary magnetic field (IMF) conditions, involving plasma flow across magnetic separatrices, and (2) time-dependent reconnection under generic southward IMF conditions, involving a locally detectable change in the magnetic field topology. It is concluded that magnetic reconnection phenomena at Earth's dayside magnetopause are adequately captured by two distinct definitions: The Vasyliunas definition [V. M. Vasyliunas, Rev. Geophys 13, 303 (1975)], which identifies magnetic reconnection with plasma flow across magnetic separatrices, and the Greene definition [J. Greene, Phys. Fluids B 5, 2355 (1993)], which identifies magnetic reconnection with a violation of magnetic flux conservation. Further generalizations of the definition of magnetic reconnection-e.g., the Schindler-Hesse [K. Schindler and M. Hesse, J. Geophys. Res. 93, 5547 (1988)] definition, which identifies reconnection with spatially localized violations of ideal MHD-are, while potentially useful in characterizing reconnection phenomena in the absence of magnetic nulls, separators, or separatrices, unnecessary in the magnetospheric context.
AB - Magnetic reconnection is thought to be the primary mode by which the solar wind couples to the terrestrial magnetosphere, driving phenomena such as magnetic storms and aurorae. While the theory of two-dimensional reconnection is well developed and has been applied with great success to axisymmetric and toroidal systems such as laboratory plasma experiments and fusion devices, it is difficult to justify the application of two-dimensional theory to nontoroidal plasma systems such as Earth's magnetosphere. Unfortunately, the theory of three-dimensional magnetic reconnection is much less well developed, and even defining magnetic reconnection has turned out to be controversial. In this paper, recent progress in the use of magnetohydrodynamics (MHD) to address the physics of three-dimensional reconnection in Earth's magnetosphere is reviewed. The paper consists of two parts. In the first part, various definitions of three-dimensional reconnection are reviewed, with the goal of mapping these definitions to sets of physical phenomena that have been identified as "reconnection" in various contexts. In the second part of the paper, MHD simulation results for the magnetosphere are presented, and two qualitatively distinct types of reconnection phenomena are identified: (1) Steady separator reconnection under generic northward interplanetary magnetic field (IMF) conditions, involving plasma flow across magnetic separatrices, and (2) time-dependent reconnection under generic southward IMF conditions, involving a locally detectable change in the magnetic field topology. It is concluded that magnetic reconnection phenomena at Earth's dayside magnetopause are adequately captured by two distinct definitions: The Vasyliunas definition [V. M. Vasyliunas, Rev. Geophys 13, 303 (1975)], which identifies magnetic reconnection with plasma flow across magnetic separatrices, and the Greene definition [J. Greene, Phys. Fluids B 5, 2355 (1993)], which identifies magnetic reconnection with a violation of magnetic flux conservation. Further generalizations of the definition of magnetic reconnection-e.g., the Schindler-Hesse [K. Schindler and M. Hesse, J. Geophys. Res. 93, 5547 (1988)] definition, which identifies reconnection with spatially localized violations of ideal MHD-are, while potentially useful in characterizing reconnection phenomena in the absence of magnetic nulls, separators, or separatrices, unnecessary in the magnetospheric context.
UR - http://www.scopus.com/inward/record.url?scp=44649172138&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44649172138&partnerID=8YFLogxK
U2 - 10.1063/1.2913548
DO - 10.1063/1.2913548
M3 - Article
AN - SCOPUS:44649172138
SN - 1070-664X
VL - 15
JO - Physics of Plasmas
JF - Physics of Plasmas
IS - 5
M1 - 056504
ER -