Deep ReLU networks have surprisingly few activation patterns

Boris Hanin, David Rolnick

Research output: Contribution to journalConference articlepeer-review

93 Scopus citations

Abstract

The success of deep networks has been attributed in part to their expressivity: per parameter, deep networks can approximate a richer class of functions than shallow networks. In ReLU networks, the number of activation patterns is one measure of expressivity; and the maximum number of patterns grows exponentially with the depth. However, recent work has showed that the practical expressivity of deep networks - the functions they can learn rather than express - is often far from the theoretical maximum. In this paper, we show that the average number of activation patterns for ReLU networks at initialization is bounded by the total number of neurons raised to the input dimension. We show empirically that this bound, which is independent of the depth, is tight both at initialization and during training, even on memorization tasks that should maximize the number of activation patterns. Our work suggests that realizing the full expressivity of deep networks may not be possible in practice, at least with current methods.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume32
StatePublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: Dec 8 2019Dec 14 2019

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Deep ReLU networks have surprisingly few activation patterns'. Together they form a unique fingerprint.

Cite this