Deep Patch Visual Odometry

Zachary Teed, Lahav Lipson, Jia Deng

Research output: Contribution to journalConference articlepeer-review

7 Scopus citations

Abstract

We propose Deep Patch Visual Odometry (DPVO), a new deep learning system for monocular Visual Odometry (VO). DPVO uses a novel recurrent network architecture designed for tracking image patches across time. Recent approaches to VO have significantly improved the state-of-the-art accuracy by using deep networks to predict dense flow between video frames. However, using dense flow incurs a large computational cost, making these previous methods impractical for many use cases. Despite this, it has been assumed that dense flow is important as it provides additional redundancy against incorrect matches. DPVO disproves this assumption, showing that it is possible to get the best accuracy and efficiency by exploiting the advantages of sparse patch-based matching over dense flow. DPVO introduces a novel recurrent update operator for patch based correspondence coupled with differentiable bundle adjustment. On Standard benchmarks, DPVO outperforms all prior work, including the learning-based state-of-the-art VO-system (DROID) using a third of the memory while running 3x faster on average. Code is available at https://github.com/princeton-vl/DPVO.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume36
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Deep Patch Visual Odometry'. Together they form a unique fingerprint.

Cite this