4 Scopus citations

Abstract

Deciphering the regulatory code of gene expression and interpreting the transcriptional effects of genome variation are critical challenges in human genetics. Modern experimental technologies have resulted in an abundance of data, enabling the development of sequence-based deep learning models that link patterns embedded in DNA to the biochemical and regulatory properties contributing to transcriptional regulation, including modeling epigenetic marks, 3D genome organization, and gene expression, with tissue and cell-type specificity. Such methods can predict the functional consequences of any noncoding variant in the human genome, even rare or never-before-observed variants, and systematically characterize their consequences beyond what is tractable from experiments or quantitative genetics studies alone. Recently, the development and application of interpretability approaches have led to the identification of key sequence patterns contributing to the predicted tasks, providing insights into the underlying biological mechanisms learned and revealing opportunities for improvement in future models.

Original languageEnglish (US)
Pages (from-to)105-122
Number of pages18
JournalAnnual Review of Genomics and Human Genetics
Volume25
Issue number1
DOIs
StatePublished - Aug 27 2024

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics
  • Genetics(clinical)

Keywords

  • AI
  • deep learning
  • genomics
  • machine learning
  • sequence models
  • transcriptional regulation

Fingerprint

Dive into the research topics of 'Deep Learning Sequence Models for Transcriptional Regulation'. Together they form a unique fingerprint.

Cite this