DECONSTRUCTING DENOISING DIFFUSION MODELS FOR SELF-SUPERVISED LEARNING

Xinlei Chen, Zhuang Liu, Saining Xie, Kaiming He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

In this study, we examine the representation learning abilities of Denoising Diffusion Models (DDM) that were originally purposed for image generation. Our philosophy is to deconstruct a DDM, gradually transforming it into a classical Denoising Autoencoder (DAE). This deconstructive process allows us to explore how various components of modern DDMs influence self-supervised representation learning. We observe that only a very few modern components are critical for learning good representations, while many others are nonessential. Our study ultimately arrives at an approach that is highly simplified and to a large extent resembles a classical DAE. We hope our study will rekindle interest in a family of classical methods within the realm of modern self-supervised learning.

Original languageEnglish (US)
Title of host publication13th International Conference on Learning Representations, ICLR 2025
PublisherInternational Conference on Learning Representations, ICLR
Pages17129-17143
Number of pages15
ISBN (Electronic)9798331320850
StatePublished - 2025
Event13th International Conference on Learning Representations, ICLR 2025 - Singapore, Singapore
Duration: Apr 24 2025Apr 28 2025

Publication series

Name13th International Conference on Learning Representations, ICLR 2025

Conference

Conference13th International Conference on Learning Representations, ICLR 2025
Country/TerritorySingapore
CitySingapore
Period4/24/254/28/25

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'DECONSTRUCTING DENOISING DIFFUSION MODELS FOR SELF-SUPERVISED LEARNING'. Together they form a unique fingerprint.

Cite this