Abstract
Decision making is a core competence for animals and humans acting and surviving in environments they only partially comprehend, gaining rewards and punishments for their troubles. Decision-theoretic concepts permeate experiments and computational models in ethology, psychology, and neuroscience. Here, we review a well-known, coherent Bayesian approach to decision making, showing how it unifies issues in Markovian decision problems, signal detection psychophysics, sequential sampling, and optimal exploration and discuss paradigmatic psychological and neural examples of each problem. We discuss computational issues concerning what subjects know about their task and how ambitious they are in seeking opti mal solutions; we address algorithmic topics concerning model-based and model-free methods for making choices; and we highlight key aspects of the neural implementation of decision making.
Original language | English (US) |
---|---|
Pages (from-to) | 429-453 |
Number of pages | 25 |
Journal | Cognitive, Affective and Behavioral Neuroscience |
Volume | 8 |
Issue number | 4 |
DOIs | |
State | Published - Dec 2008 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Cognitive Neuroscience
- Behavioral Neuroscience