Abstract
Auctions are becoming an increasingly popular method for transacting business, especially over the Internet. This article presents a general approach to building autonomous bidding agents to bid in multiple simultaneous auctions for interacting goods. A core component of our approach learns a model of the empirical price dynamics based on past data and uses the model to analytically calculate, to the greatest extent possible, optimal bids. We introduce a new and general boosting-based algorithm for conditional density estimation problems of this kind, i.e., supervised learning problems in which the goal is to estimate the entire conditional distribution of the real-valued label. This approach is fully implemented as ATTac-2001, a top-scoring agent in the second Trading Agent Competition (TAG-01). We present experiments demonstrating the effectiveness of our boosting-based price predictor relative to several reasonable alternatives.
Original language | English (US) |
---|---|
Pages (from-to) | 209-242 |
Number of pages | 34 |
Journal | Journal of Artificial Intelligence Research |
Volume | 19 |
DOIs | |
State | Published - 2003 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence