De-anonymizing web browsing data with social networks

Jessica Su, Ansh Shukla, Sharad Goel, Arvind Narayanan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

69 Scopus citations

Abstract

Can online trackers and network adversaries de-anonymize web browsing data readily available to them? We show—theoretically, via simulation, and through experiments on real user data—that de-identified web browsing histories can be linked to social media profiles using only publicly available data. Our approach is based on a simple observation: each person has a distinctive social network, and thus the set of links appearing in one's feed is unique. Assuming users visit links in their feed with higher probability than a random user, browsing histories contain tell-tale marks of identity. We formalize this intuition by specifying a model of web browsing behavior and then deriving the maximum likelihood estimate of a user's social profile. We evaluate this strategy on simulated browsing histories, and show that given a history with 30 links originating from Twitter, we can deduce the corresponding Twitter profile more than 50% of the time. To gauge the real-world effectiveness of this approach, we recruited nearly 400 people to donate their web browsing histories, and we were able to correctly identify more than 70% of them. We further show that several online trackers are embedded on sufficiently many websites to carry out this attack with high accuracy. Our theoretical contribution applies to any type of transactional data and is robust to noisy observations, generalizing a wide range of previous de-anonymization attacks. Finally, since our attack attempts to find the correct Twitter profile out of over 300 million candidates, it is—to our knowledge—the largest-scale demonstrated de-anonymization to date.

Original languageEnglish (US)
Title of host publication26th International World Wide Web Conference, WWW 2017
PublisherInternational World Wide Web Conferences Steering Committee
Pages1261-1269
Number of pages9
ISBN (Print)9781450349130
DOIs
StatePublished - 2017
Event26th International World Wide Web Conference, WWW 2017 - Perth, Australia
Duration: Apr 3 2017Apr 7 2017

Publication series

Name26th International World Wide Web Conference, WWW 2017

Other

Other26th International World Wide Web Conference, WWW 2017
Country/TerritoryAustralia
CityPerth
Period4/3/174/7/17

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'De-anonymizing web browsing data with social networks'. Together they form a unique fingerprint.

Cite this