DCFNet: Deep Neural Network with Decomposed Convolutional Filters

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, Guillermo Sapiro

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations

Abstract

Filters in a Convolutional Neural Network (CNN) contain model parameters learned from enormous amounts of data. In this paper, we suggest to decompose convolutional filters in CNN as a truncated expansion with pre-fixed bases, namely the Decomposed Convolutional Filters network (DCFNet), where the expansion coefficients remain learned from data. Such a structure not only reduces the number of trainable parameters and computation, but also imposes filter regularity by bases truncation. Through extensive experiments, we consistently observe that DCFNet maintains accuracy for image classification tasks with a significant reduction of model parameters, particularly with Fourier-Bessel (FB) bases, and even with random bases. Theoretically, we analyze the representation stability of DCFNet with respect to input variations, and prove representation stability under generic assumptions on the expansion coefficients. The analysis is consistent with the empirical observations.

Original languageEnglish (US)
Title of host publication35th International Conference on Machine Learning, ICML 2018
EditorsAndreas Krause, Jennifer Dy
PublisherInternational Machine Learning Society (IMLS)
Pages6687-6696
Number of pages10
ISBN (Electronic)9781510867963
StatePublished - 2018
Externally publishedYes
Event35th International Conference on Machine Learning, ICML 2018 - Stockholm, Sweden
Duration: Jul 10 2018Jul 15 2018

Publication series

Name35th International Conference on Machine Learning, ICML 2018
Volume9

Other

Other35th International Conference on Machine Learning, ICML 2018
Country/TerritorySweden
CityStockholm
Period7/10/187/15/18

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'DCFNet: Deep Neural Network with Decomposed Convolutional Filters'. Together they form a unique fingerprint.

Cite this