Data-Driven Factor Graphs for Deep Symbol Detection

Nir Shlezinger, Nariman Farsad, Yonina C. Eldar, Andrea J. Goldsmith

Research output: Chapter in Book/Report/Conference proceedingConference contribution

26 Scopus citations


Many important schemes in signal processing and communications, ranging from the BCJR algorithm to the Kalman filter, are instances of factor graph methods. This family of algorithms is based on recursive message passing-based computations carried out over graphical models, representing a factorization of the underlying statistics. In order to implement these algorithms, one must have accurate knowledge of the statistical model of the underlying signals. In this work we implement factor graph methods in a data-driven manner when the statistics are unknown. In particular, we propose using machine learning (ML) tools to learn the factor graph, instead of the overall system task, which in turn is used for inference by message passing over the learned graph. We apply the proposed approach to learn the factor graph representing a finite-memory channel, demonstrating the resulting ability to implement BCJR detection in a data-driven fashion. We demonstrate that the proposed system, referred to as BCJRNet, learns to implement the BCJR algorithm from a small training set, and that the resulting receiver exhibits improved robustness to inaccurate training compared to the conventional channel-model-based receiver operating under the same level of uncertainty. Our results indicate that by utilizing ML tools to learn factor graphs from labeled data, one can implement a broad range of model-based algorithms, which traditionally require full knowledge of the underlying statistics, in a data-driven fashion.

Original languageEnglish (US)
Title of host publication2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781728164328
StatePublished - Jun 2020
Externally publishedYes
Event2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, United States
Duration: Jul 21 2020Jul 26 2020

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095


Conference2020 IEEE International Symposium on Information Theory, ISIT 2020
Country/TerritoryUnited States
CityLos Angeles

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'Data-Driven Factor Graphs for Deep Symbol Detection'. Together they form a unique fingerprint.

Cite this