Skip to main navigation
Skip to search
Skip to main content
Princeton University Home
Help & FAQ
Home
Profiles
Research units
Facilities
Projects
Research output
Press/Media
Search by expertise, name or affiliation
Data compression in cosmology: A compressed likelihood for Planck data
Heather Prince,
Jo Dunkley
Physics
Astrophysical Sciences
Research output
:
Contribution to journal
›
Article
›
peer-review
21
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Data compression in cosmology: A compressed likelihood for Planck data'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Planck Data
100%
Cosmology
100%
Planck 2015
100%
Data Compression
100%
Low Temperature
50%
Temperature Data
50%
Parameter Estimation
50%
Optical Depth
50%
Polarization Data
50%
Planck
50%
Extended Model
50%
Map-based
50%
Reionization
50%
Parameter Optimization
50%
Planck Temperature
50%
Python
50%
Gaussian Likelihood
50%
Lite
50%
Python Implementation
50%
Mathematics
Data Compression
100%
Gaussian Distribution
100%
Extended Model
50%
Parameter Estimation
50%
Data Point
50%
Distributed Data
50%
Data Space
50%
Physics
Gaussian Distribution
100%
Data Compression
100%
Parameter Estimation
50%
Reionization
50%