Abstract
Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of > 3 X 109 is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than < 0.1 events (other than γ-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of 1.2x10 -47 cm2 (1.1x10 -46 cm2) for WIMPs of 1TeV/c2 (10TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.
Original language | English (US) |
---|---|
Article number | 131 |
Journal | European Physical Journal Plus |
Volume | 133 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2018 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
Fingerprint Dive into the research topics of 'DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS'. Together they form a unique fingerprint.
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
DarkSide-20k : A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. / Aalseth, C. E.; Acerbi, F.; Agnes, P.; Albuquerque, I. F.M.; Alexander, T.; Alici, A.; Alton, A. K.; Antonioli, P.; Arcelli, S.; Ardito, R.; Arnquist, I. J.; Asner, D. M.; Ave, M.; Back, H. O.; Barrado Olmedo, A. I.; Batignani, G.; Bertoldo, E.; Bettarini, S.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Boulay, M.; Bunker, R.; Bussino, S.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Caminata, A.; Canci, N.; Candela, A.; Cantini, C.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Cereseto, R.; Chepurnov, A.; Cicalò, C.; Cifarelli, L.; Citterio, M.; Cocco, A. G.; Colocci, M.; Corgiolu, S.; Covone, G.; Crivelli, P.; D’Antone, I.; D’Incecco, M.; D’Urso, D.; Da Rocha Rolo, M. D.; Daniel, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Guido, G.; De Rosa, G.; Dellacasa, G.; Della Valle, M.; Demontis, P.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dormia, I.; Dussoni, S.; Empl, A.; Fernandez Diaz, M.; Ferri, A.; Filip, C.; Fiorillo, G.; Fomenko, K.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Garcia Abia, P.; Gendotti, A.; Ghisi, A.; Giagu, S.; Giampa, P.; Gibertoni, G.; Giganti, C.; Giorgi, M. A.; Giovanetti, G. K.; Gligan, M. L.; Gola, A.; Gorchakov, O.; Goretti, A. M.; Granato, F.; Grassi, M.; Grate, J. W.; Grigoriev, G. Y.; Gromov, M.; Guan, M.; Guerra, M. B.B.; Guerzoni, M.; Gulino, M.; Haaland, R. K.; Hallin, A.; Harrop, B.; Hoppe, E. W.; Horikawa, S.; Hosseini, B.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An; Jillings, C.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kim, S.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M.; Kúzniak, M.; La Commara, M.; Lehnert, B.; Li, X.; Lissia, M.; Lodi, G. U.; Loer, B.; Longo, G.; Loverre, P.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mapelli, L.; Marcante, M.; Margotti, A.; Mari, S. M.; Mariani, M.; Maricic, J.; Martoff, C. J.; Mascia, M.; Mayer, M.; McDonald, A. B.; Messina, A.; Meyers, P. D.; Milincic, R.; Moggi, A.; Moioli, S.; Monroe, J.; Monte, A.; Morrocchi, M.; Mount, B. J.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Nania, R.; Navrer Agasson, A.; Nikulin, I.; Nosov, V.; Nozdrina, A. O.; Nurakhov, N. N.; Oleinik, A.; Oleynikov, V.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pandola, L.; Pantic, E.; Paoloni, E.; Paternoster, G.; Pavletcov, V.; Pazzona, F.; Peeters, S.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perotti, F.; Perruzza, R.; Pesudo, V.; Piemonte, C.; Pilo, F.; Pocar, A.; Pollmann, T.; Portaluppi, D.; Pugachev, D. A.; Qian, H.; Radics, B.; Raffaelli, F.; Ragusa, F.; Razeti, M.; Razeto, A.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Retière, F.; Riffard, Q.; Rivetti, A.; Rizzardini, S.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rubbia, A.; Sablone, D.; Salatino, P.; Samoylov, O.; Sánchez García, E.; Sands, W.; Sanfilippo, S.; Sant, M.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Scioli, G.; Segreto, E.; Seifert, A.; Semenov, D. A.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Sheshukov, A.; Simeone, M.; Singh, P. N.; Skensved, P.; Skorokhvatov, M. D.; Smirnov, O.; Sobrero, G.; Sokolov, A.; Sotnikov, A.; Speziale, F.; Stainforth, R.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E. V.; Vacca, A.; Vázquez-Jáuregui, E.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Wahl, J.; Walding, J.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Williams, R.; Wojcik, M. M.; Wu, S.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Yllera de Llano, A.; Zappa, F.; Zappalà, G.; Zhu, C.; Zichichi, A.; Zullo, M.; Zullo, A.; Zuzel, G.
In: European Physical Journal Plus, Vol. 133, No. 3, 131, 03.2018.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - DarkSide-20k
T2 - A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS
AU - Aalseth, C. E.
AU - Acerbi, F.
AU - Agnes, P.
AU - Albuquerque, I. F.M.
AU - Alexander, T.
AU - Alici, A.
AU - Alton, A. K.
AU - Antonioli, P.
AU - Arcelli, S.
AU - Ardito, R.
AU - Arnquist, I. J.
AU - Asner, D. M.
AU - Ave, M.
AU - Back, H. O.
AU - Barrado Olmedo, A. I.
AU - Batignani, G.
AU - Bertoldo, E.
AU - Bettarini, S.
AU - Bisogni, M. G.
AU - Bocci, V.
AU - Bondar, A.
AU - Bonfini, G.
AU - Bonivento, W.
AU - Bossa, M.
AU - Bottino, B.
AU - Boulay, M.
AU - Bunker, R.
AU - Bussino, S.
AU - Buzulutskov, A.
AU - Cadeddu, M.
AU - Cadoni, M.
AU - Caminata, A.
AU - Canci, N.
AU - Candela, A.
AU - Cantini, C.
AU - Caravati, M.
AU - Cariello, M.
AU - Carlini, M.
AU - Carpinelli, M.
AU - Castellani, A.
AU - Catalanotti, S.
AU - Cataudella, V.
AU - Cavalcante, P.
AU - Cavuoti, S.
AU - Cereseto, R.
AU - Chepurnov, A.
AU - Cicalò, C.
AU - Cifarelli, L.
AU - Citterio, M.
AU - Cocco, A. G.
AU - Colocci, M.
AU - Corgiolu, S.
AU - Covone, G.
AU - Crivelli, P.
AU - D’Antone, I.
AU - D’Incecco, M.
AU - D’Urso, D.
AU - Da Rocha Rolo, M. D.
AU - Daniel, M.
AU - Davini, S.
AU - de Candia, A.
AU - De Cecco, S.
AU - De Deo, M.
AU - De Filippis, G.
AU - De Guido, G.
AU - De Rosa, G.
AU - Dellacasa, G.
AU - Della Valle, M.
AU - Demontis, P.
AU - Derbin, A.
AU - Devoto, A.
AU - Di Eusanio, F.
AU - Di Pietro, G.
AU - Dionisi, C.
AU - Dolgov, A.
AU - Dormia, I.
AU - Dussoni, S.
AU - Empl, A.
AU - Fernandez Diaz, M.
AU - Ferri, A.
AU - Filip, C.
AU - Fiorillo, G.
AU - Fomenko, K.
AU - Franco, D.
AU - Froudakis, G. E.
AU - Gabriele, F.
AU - Gabrieli, A.
AU - Galbiati, C.
AU - Garcia Abia, P.
AU - Gendotti, A.
AU - Ghisi, A.
AU - Giagu, S.
AU - Giampa, P.
AU - Gibertoni, G.
AU - Giganti, C.
AU - Giorgi, M. A.
AU - Giovanetti, G. K.
AU - Gligan, M. L.
AU - Gola, A.
AU - Gorchakov, O.
AU - Goretti, A. M.
AU - Granato, F.
AU - Grassi, M.
AU - Grate, J. W.
AU - Grigoriev, G. Y.
AU - Gromov, M.
AU - Guan, M.
AU - Guerra, M. B.B.
AU - Guerzoni, M.
AU - Gulino, M.
AU - Haaland, R. K.
AU - Hallin, A.
AU - Harrop, B.
AU - Hoppe, E. W.
AU - Horikawa, S.
AU - Hosseini, B.
AU - Hughes, D.
AU - Humble, P.
AU - Hungerford, E. V.
AU - Ianni, An
AU - Jillings, C.
AU - Johnson, T. N.
AU - Keeter, K.
AU - Kendziora, C. L.
AU - Kim, S.
AU - Koh, G.
AU - Korablev, D.
AU - Korga, G.
AU - Kubankin, A.
AU - Kuss, M.
AU - Kúzniak, M.
AU - La Commara, M.
AU - Lehnert, B.
AU - Li, X.
AU - Lissia, M.
AU - Lodi, G. U.
AU - Loer, B.
AU - Longo, G.
AU - Loverre, P.
AU - Lussana, R.
AU - Luzzi, L.
AU - Ma, Y.
AU - Machado, A. A.
AU - Machulin, I. N.
AU - Mandarano, A.
AU - Mapelli, L.
AU - Marcante, M.
AU - Margotti, A.
AU - Mari, S. M.
AU - Mariani, M.
AU - Maricic, J.
AU - Martoff, C. J.
AU - Mascia, M.
AU - Mayer, M.
AU - McDonald, A. B.
AU - Messina, A.
AU - Meyers, P. D.
AU - Milincic, R.
AU - Moggi, A.
AU - Moioli, S.
AU - Monroe, J.
AU - Monte, A.
AU - Morrocchi, M.
AU - Mount, B. J.
AU - Mu, W.
AU - Muratova, V. N.
AU - Murphy, S.
AU - Musico, P.
AU - Nania, R.
AU - Navrer Agasson, A.
AU - Nikulin, I.
AU - Nosov, V.
AU - Nozdrina, A. O.
AU - Nurakhov, N. N.
AU - Oleinik, A.
AU - Oleynikov, V.
AU - Orsini, M.
AU - Ortica, F.
AU - Pagani, L.
AU - Pallavicini, M.
AU - Palmas, S.
AU - Pandola, L.
AU - Pantic, E.
AU - Paoloni, E.
AU - Paternoster, G.
AU - Pavletcov, V.
AU - Pazzona, F.
AU - Peeters, S.
AU - Pelczar, K.
AU - Pellegrini, L. A.
AU - Pelliccia, N.
AU - Perotti, F.
AU - Perruzza, R.
AU - Pesudo, V.
AU - Piemonte, C.
AU - Pilo, F.
AU - Pocar, A.
AU - Pollmann, T.
AU - Portaluppi, D.
AU - Pugachev, D. A.
AU - Qian, H.
AU - Radics, B.
AU - Raffaelli, F.
AU - Ragusa, F.
AU - Razeti, M.
AU - Razeto, A.
AU - Regazzoni, V.
AU - Regenfus, C.
AU - Reinhold, B.
AU - Renshaw, A. L.
AU - Rescigno, M.
AU - Retière, F.
AU - Riffard, Q.
AU - Rivetti, A.
AU - Rizzardini, S.
AU - Romani, A.
AU - Romero, L.
AU - Rossi, B.
AU - Rossi, N.
AU - Rubbia, A.
AU - Sablone, D.
AU - Salatino, P.
AU - Samoylov, O.
AU - Sánchez García, E.
AU - Sands, W.
AU - Sanfilippo, S.
AU - Sant, M.
AU - Santorelli, R.
AU - Savarese, C.
AU - Scapparone, E.
AU - Schlitzer, B.
AU - Scioli, G.
AU - Segreto, E.
AU - Seifert, A.
AU - Semenov, D. A.
AU - Shchagin, A.
AU - Shekhtman, L.
AU - Shemyakina, E.
AU - Sheshukov, A.
AU - Simeone, M.
AU - Singh, P. N.
AU - Skensved, P.
AU - Skorokhvatov, M. D.
AU - Smirnov, O.
AU - Sobrero, G.
AU - Sokolov, A.
AU - Sotnikov, A.
AU - Speziale, F.
AU - Stainforth, R.
AU - Stanford, C.
AU - Suffritti, G. B.
AU - Suvorov, Y.
AU - Tartaglia, R.
AU - Testera, G.
AU - Tonazzo, A.
AU - Tosi, A.
AU - Trinchese, P.
AU - Unzhakov, E. V.
AU - Vacca, A.
AU - Vázquez-Jáuregui, E.
AU - Verducci, M.
AU - Viant, T.
AU - Villa, F.
AU - Vishneva, A.
AU - Vogelaar, B.
AU - Wada, M.
AU - Wahl, J.
AU - Walding, J.
AU - Wang, H.
AU - Wang, Y.
AU - Watson, A. W.
AU - Westerdale, S.
AU - Williams, R.
AU - Wojcik, M. M.
AU - Wu, S.
AU - Xiang, X.
AU - Xiao, X.
AU - Yang, C.
AU - Ye, Z.
AU - Yllera de Llano, A.
AU - Zappa, F.
AU - Zappalà, G.
AU - Zhu, C.
AU - Zichichi, A.
AU - Zullo, M.
AU - Zullo, A.
AU - Zuzel, G.
N1 - Funding Information: Design of the plant started in April 2015 with seed funding from the US NSF through PHY-1314507. Aria is to be installed in underground vertical shafts of diameter 5 m and depth 350 m, located at the Seruci mine campus of CarboSulcis, a mining company owned by the Regione Autonoma della Sardegna (RAS). In February 2015 a proposal was submitted to the Italian INFN and RAS, and the funding for the Seruci-I column was approved on July 24, 2015. Construction of Seruci-I started in September 2015 in Italy.
PY - 2018/3
Y1 - 2018/3
N2 - Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of > 3 X 109 is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than < 0.1 events (other than γ-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of 1.2x10 -47 cm2 (1.1x10 -46 cm2) for WIMPs of 1TeV/c2 (10TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.
AB - Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of > 3 X 109 is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than < 0.1 events (other than γ-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of 1.2x10 -47 cm2 (1.1x10 -46 cm2) for WIMPs of 1TeV/c2 (10TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.
UR - http://www.scopus.com/inward/record.url?scp=85045551655&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045551655&partnerID=8YFLogxK
U2 - 10.1140/epjp/i2018-11973-4
DO - 10.1140/epjp/i2018-11973-4
M3 - Article
AN - SCOPUS:85045551655
VL - 133
JO - European Physical Journal Plus
JF - European Physical Journal Plus
SN - 2190-5444
IS - 3
M1 - 131
ER -