Abstract
This paper studies full-duplex (FD) cellular networks in which a base station (BS) operated in FD mode with multiple antennas supports multiple uplink and downlink users simultaneously in the same wireless channel. Two typical FD cellular scenarios are considered, one with half-duplex (HD) users and the other with FD users along with the FD BS. For both the cases, a novel constructive method is developed for finding a closed-form interference alignment (IA) solution, named cyclic IA. The core idea behind this approach is to construct a set of loop-equations enabling IA in a cyclic manner, so that beamforming vectors are sequentially determined by solving an eigenvalue problem. It is shown analytically that the proposed cyclic IA can achieve the optimal sum degreesof- freedom (DoF) when the number of user antennas is large enough to meet the derived conditions. In particular, it is shown that the proposed scheme achieves a twofold DoF gain compared with conventional HD cellular networks even in the presence of inter-link interference, provided the number of users becomes large enough compared with the ratio of the number of BSs and user antennas. Simulation results demonstrate that not only are the analytical DoF results valid, but under a practical multi-cell scenario, the proposed cyclic IA offers significant throughput gains depending on the cell radius.
Original language | English (US) |
---|---|
Article number | 7870645 |
Pages (from-to) | 2657-2671 |
Number of pages | 15 |
Journal | IEEE Transactions on Communications |
Volume | 65 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2017 |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering
Keywords
- Degrees of freedom
- Eigenvalue problem
- Full-duplex
- Interference alignment