CutQC: Using small Quantum computers for large Quantum circuit evaluations

Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, Margaret Martonosi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

91 Scopus citations

Abstract

Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC's power, but today's Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative-purely classical simulations- A nd demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone.

Original languageEnglish (US)
Title of host publicationProceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2021
PublisherAssociation for Computing Machinery
Pages473-486
Number of pages14
ISBN (Electronic)9781450383172
DOIs
StatePublished - Apr 19 2021
Event26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2021 - Virtual, Online, United States
Duration: Apr 19 2021Apr 23 2021

Publication series

NameInternational Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS

Conference

Conference26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2021
Country/TerritoryUnited States
CityVirtual, Online
Period4/19/214/23/21

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems
  • Hardware and Architecture

Keywords

  • Hybrid Computing
  • Quantum Circuit Cutting
  • Quantum Computing (QC)

Fingerprint

Dive into the research topics of 'CutQC: Using small Quantum computers for large Quantum circuit evaluations'. Together they form a unique fingerprint.

Cite this