Abstract
It is well known that any given density ρ(x) can be realized by a determinantal wave function for N particles. The question addressed here is whether any given density ρ(x) and current density j(x) can be simultaneously realized by a (finite kinetic energy) determinantal wave function. In case the velocity field v(x)=j(x)/ρ(x) is curlfree, we provide a solution for all N, and we provide an explicit upper bound for the energy. If the velocity field is not curl-free, there is a finite energy solution for all N≥4, but we do not provide an explicit energy bound in this case. For N=2 we provide an example of a non-curl-free velocity field for which there is a solution and an example for which there is no solution. The case N=3 with a non-curl-free velocity field is left open.
Original language | English (US) |
---|---|
Article number | 032516 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Volume | 88 |
Issue number | 3 |
DOIs | |
State | Published - Sep 26 2013 |
All Science Journal Classification (ASJC) codes
- Atomic and Molecular Physics, and Optics