CTCF maintains differential methylation at the Igf2/H19 locus

Christopher J. Schoenherr, John M. Levorse, Shirley M. Tilghman

Research output: Contribution to journalArticlepeer-review

258 Scopus citations


Genomic imprinting relies on establishing and maintaining the parental-specific methylation of DNA elements that control the differential expression of maternal and paternal alleles. Although the essential DNA methyltransferases have been discovered, proteins that regulate the sequence-specific establishment and maintenance of allelic methylation have not been identified. One candidate regulator of methylation, the zinc-finger protein CTCF, binds to the imprinting control region (ICR) of the genes Igf2 (encoding insulin-like growth factor 2) and H19 (fetal liver mRNA; refs. 1,2). The unmethylated maternal ICR is a chromatin boundary that prevents distant enhancers from activating Igf2 (refs. 3-6). In vitro experiments have suggested that CTCF mediates boundary activity of the maternal ICR, and that methylation of the paternal ICR abolishes this activity by preventing CTCF binding. Using mice with point mutations in all four CTCF sites in the ICR, we show that maternally transmitted mutant ICRs in neonatal mice acquire a substantial but heterogeneous degree of methylation. Mutant ICRs in oocytes and blastocysts are not methylated, however, indicating that binding of CTCF is not required to establish the unmethylated ICR during oogenesis. We also show that the mutant ICR lacks enhancer-blocking activity, as the expression of Igf2 is activated on mutant maternal chromosomes. Conversely, maternal H19 expression is reduced, suggesting a positive role for CTCF in the transcription of that gene. This study constitutes the first in vivo demonstration of the multiple functions of CTCF in an ICR.

Original languageEnglish (US)
Pages (from-to)66-69
Number of pages4
JournalNature Genetics
Issue number1
StatePublished - Jan 1 2003

All Science Journal Classification (ASJC) codes

  • Genetics


Dive into the research topics of 'CTCF maintains differential methylation at the Igf2/H19 locus'. Together they form a unique fingerprint.

Cite this