Crystalline Quantum Circuits

Grace M. Sommers, David A. Huse, Michael J. Gullans

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics, while remaining analytically tractable through probabilistic methods. Motivated by an interest in deterministic circuits with similar applications, we construct classes of nonrandom unitary Clifford circuits by imposing translation invariance in both time and space. Further imposing dual unitarity, our circuits effectively become crystalline spacetime lattices whose vertices are swap or iswap two-qubit gates and whose edges may contain one-qubit gates. One can then require invariance under (subgroups of) the crystal's point group. Working on the square and kagome lattices, we use the formalism of Clifford quantum cellular automata to describe operator spreading, entanglement generation, and recurrence times of these circuits. A full classification on the square lattice reveals, of particular interest, a "nonfractal good scrambling class"with dense operator spreading that generates codes with linear contiguous code distance and high performance under erasure errors at the end of the circuit. We also break unitarity by adding spacetime translation-invariant measurements and find a class of such circuits with fractal dynamics.

Original languageEnglish (US)
Article number030313
JournalPRX Quantum
Volume4
Issue number3
DOIs
StatePublished - Jul 2023

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Computer Science
  • Mathematical Physics
  • General Physics and Astronomy
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Crystalline Quantum Circuits'. Together they form a unique fingerprint.

Cite this