Abstract
The x-ray crystal structure of the P1 or H domain of the Salmonella CheA protein has been solved at 2.1-Å resolution. The structure is composed of an up-down up-down four-helix bundle that is typical of histidine phosphotransfer or HPt domains such as Escherichia coli ArcBC and Saccharomyces cerevisiae Ypd1. Loop regions and additional structural features distinguish all three proteins. The CheA domain has an additional C-terminal helix that lies over the surface formed by the C and D helices. The phosphoaccepting His-48 is located at a solvent-exposed position in the middle of the B helix where it is surrounded by several residues that are characteristic of other HPt domains. Mutagenesis studies indicate that conserved glutamate and lysine residues that are part of a hydrogen-bond network with His-48 are essential for the ATP-dependent phosphorylation reaction but not for the phosphotransfer reaction with CheY. These results suggest that the CheA-P1 domain may serve as a good model for understanding the general function of HPt domains in complex two-component phosphorelay systems.
Original language | English (US) |
---|---|
Pages (from-to) | 31074-31082 |
Number of pages | 9 |
Journal | Journal of Biological Chemistry |
Volume | 276 |
Issue number | 33 |
DOIs | |
State | Published - Aug 17 2001 |
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Biochemistry
- Cell Biology