CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM

Minkyu Jeon, Rishwanth Raghu, Miro Astore, Geoffrey Woollard, Ryan Feathers, Alkin Kaz, Sonya M. Hanson, Pilar Cossio, Ellen D. Zhong

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

Cryo-electron microscopy (cryo-EM) is a powerful technique for determining high-resolution 3D biomolecular structures from imaging data. Its unique ability to capture structural variability has spurred the development of heterogeneous reconstruction algorithms that can infer distributions of 3D structures from noisy, unlabeled imaging data. Despite the growing number of advanced methods, progress in the field is hindered by the lack of standardized benchmarks with ground truth information and reliable validation metrics. Here, we introduce CryoBench, a suite of datasets, metrics, and benchmarks for heterogeneous reconstruction in cryo-EM. CryoBench includes five datasets representing different sources of heterogeneity and degrees of difficulty. These include conformational heterogeneity generated from designed motions of antibody complexes or sampled from a molecular dynamics simulation, as well as compositional heterogeneity from mixtures of ribosome assembly states or 100 common complexes present in cells. We then analyze state-of-the-art heterogeneous reconstruction tools, including neural and non-neural methods, assess their sensitivity to noise, and propose new metrics for quantitative evaluation. We hope that CryoBench will be a foundational resource for accelerating algorithmic development and evaluation in the cryo-EM and machine learning communities. Project page: https://cryobench.cs.princeton.edu.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Externally publishedYes
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'CryoBench: Diverse and challenging datasets for the heterogeneity problem in cryo-EM'. Together they form a unique fingerprint.

Cite this