CROTON: An automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes

Victoria R. Li, Zijun Zhang, Olga G. Troyanskaya

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Motivation: CRISPR/Cas9 is a revolutionary gene-editing technology that has been widely utilized in biology, biotechnology and medicine. CRISPR/Cas9 editing outcomes depend on local DNA sequences at the target site and are thus predictable. However, existing prediction methods are dependent on both feature and model engineering, which restricts their performance to existing knowledge about CRISPR/Cas9 editing. Results: Herein, deep multi-task convolutional neural networks (CNNs) and neural architecture search (NAS) were used to automate both feature and model engineering and create an end-to-end deep-learning framework, CROTON (CRISPR Outcomes Through cONvolutional neural networks). The CROTON model architecture was tuned automatically with NAS on a synthetic large-scale construct-based dataset and then tested on an independent primary T cell genomic editing dataset. CROTON outperformed existing expert-designed models and non-NAS CNNs in predicting 1 base pair insertion and deletion probability as well as deletion and frameshift frequency. Interpretation of CROTON revealed local sequence determinants for diverse editing outcomes. Finally, CROTON was utilized to assess how single nucleotide variants (SNVs) affect the genome editing outcomes of four clinically relevant target genes: the viral receptors ACE2 and CCR5 and the immune checkpoint inhibitors CTLA4 and PDCD1. Large SNV-induced differences in CROTON predictions in these target genes suggest that SNVs should be taken into consideration when designing widely applicable gRNAs.

Original languageEnglish (US)
Pages (from-to)I342-I348
JournalBioinformatics
Volume37
DOIs
StatePublished - Jul 1 2021

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'CROTON: An automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes'. Together they form a unique fingerprint.

Cite this