TY - JOUR
T1 - Cross-property relations for momentum and diffusional transport in porous media
AU - Torquato, S.
AU - Kim, In Chan
PY - 1992
Y1 - 1992
N2 - Cross-property relations linking the fluid permeability k associated with viscous flow through a porous medium to effective diffusion properties of the medium have recently been derived. Torquato [Phys. Rev. Lett. 64, 2644 (1990)] found that k≤Dφ1τ, where τ is the "mean survival time" associated with steady-state diffusion of "reactants" in the fluid region of diffusion coefficient D and porosity φ1 of a porous medium containing absorbing walls (i.e., trap boundaries). Subsequently, Avellaneda and Torquato [Phys. Fluids A 3, 2529 (1991)] related k to the electrical formation factor F (inverse of the dimensionless effective electrical conductivity) and the principal (largest) diffusion relaxation time T 1 associated with the time-dependent trapping problem, namely, k≤DT1/F. In this study, we compute the aforementioned bounds, using an efficient first-passage-time algorithm, for grain-consolidation models of porous media and compare them to exact results for these models. We also conjecture a new relation connecting k to τ and F for a wide class of porous media, namely, k≤Dτ/F, and show that it gives the sharpest permeability estimate among the existing bounds. The importance of this relation lies not only in its usefulness as an estimator of the permeability but that it involves the diffusional parameters τ and F which can be measured in situ.
AB - Cross-property relations linking the fluid permeability k associated with viscous flow through a porous medium to effective diffusion properties of the medium have recently been derived. Torquato [Phys. Rev. Lett. 64, 2644 (1990)] found that k≤Dφ1τ, where τ is the "mean survival time" associated with steady-state diffusion of "reactants" in the fluid region of diffusion coefficient D and porosity φ1 of a porous medium containing absorbing walls (i.e., trap boundaries). Subsequently, Avellaneda and Torquato [Phys. Fluids A 3, 2529 (1991)] related k to the electrical formation factor F (inverse of the dimensionless effective electrical conductivity) and the principal (largest) diffusion relaxation time T 1 associated with the time-dependent trapping problem, namely, k≤DT1/F. In this study, we compute the aforementioned bounds, using an efficient first-passage-time algorithm, for grain-consolidation models of porous media and compare them to exact results for these models. We also conjecture a new relation connecting k to τ and F for a wide class of porous media, namely, k≤Dτ/F, and show that it gives the sharpest permeability estimate among the existing bounds. The importance of this relation lies not only in its usefulness as an estimator of the permeability but that it involves the diffusional parameters τ and F which can be measured in situ.
UR - http://www.scopus.com/inward/record.url?scp=0042998069&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0042998069&partnerID=8YFLogxK
U2 - 10.1063/1.351561
DO - 10.1063/1.351561
M3 - Article
AN - SCOPUS:0042998069
SN - 0021-8979
VL - 72
SP - 2612
EP - 2619
JO - Journal of Applied Physics
JF - Journal of Applied Physics
IS - 7
ER -