TY - JOUR

T1 - Critical collapse of the massless scalar field in axisymmetry

AU - Choptuik, Matthew W.

AU - Hirschmann, Eric W.

AU - Liebling, Steven L.

AU - Pretorius, Frans

PY - 2003

Y1 - 2003

N2 - We present the results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, nonspherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a nonspherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.

AB - We present the results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, nonspherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a nonspherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.

UR - http://www.scopus.com/inward/record.url?scp=0141433334&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0141433334&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.68.044007

DO - 10.1103/PhysRevD.68.044007

M3 - Article

AN - SCOPUS:0141433334

SN - 1550-7998

VL - 68

JO - Physical review D: Particles and fields

JF - Physical review D: Particles and fields

IS - 4

M1 - 044007

ER -