Creation of onset voltage hash by anode spots in a magnetoplasmadynamic thruster

Luke Uribarri, Edgar Y. Choueiri

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Experimental results are presented which quantify the evolution with rising J2/m (ratio of current squared to mass flow rate) of onset voltage fluctuations in a magnetoplasmadynamic thruster operating with three anode materials, and an anode spot model is presented which provides a physical explanation for the properties of these fluctuations. Voltage signals taken in the magnetoplasmadynamic thruster operating below and above onset with anodes of copper, graphite, and lead are analyzed using the statistical measures of probability density and power spectrum. A model of voltage hash as the random superposition of many anode spotting events is used to generate voltage fluctuations with statistics similar to the observed data. The experimental fluctuation statistics evolve with rising J2/m first away from Gaussian, and then back toward Gaussian, with the values of skewness and kurtosis peaking at J2/m ~ 110 kA2 · s/g; this behavior is the same for all three anode materials. Nonstationarity in the statistics is shown using high-speed video to be a result of unsteady anode evaporation. The statistics of modeled voltage hash are shown to be functions of the product of the frequency of anode spotting events and their duration, with the statistics becoming more Gaussian as this product grows. Comparison of experimental and model results suggests that, above J2/m ~ 110 kA2 · s/g, anode current conduction fragments into an increasing number of anode spots.

Original languageEnglish (US)
Pages (from-to)949-957
Number of pages9
JournalJournal of Propulsion and Power
Issue number4
StatePublished - 2009

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Fuel Technology
  • Mechanical Engineering
  • Space and Planetary Science


Dive into the research topics of 'Creation of onset voltage hash by anode spots in a magnetoplasmadynamic thruster'. Together they form a unique fingerprint.

Cite this