Creating a Secure Underlay for the Internet

Henry Birge-Lee, Joel Wanner, Grace Cimaszewski, Jonghoon Kwon, Liang Wang, François Wirz, Prateek Mittal, Adrian Perrig, Yixin Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Adversaries can exploit inter-domain routing vulnerabilities to intercept communication and compromise the security of critical Internet applications. Meanwhile the deployment of secure routing solutions such as Border Gateway Protocol Security (BGPsec) and Scalability, Control and Isolation On Next-generation networks (SCION) are still limited. How can we leverage emerging secure routing backbones and extend their security properties to the broader Internet? We design and deploy an architecture to bootstrap secure routing. Our key insight is to abstract the secure routing backbone as a virtual Autonomous System (AS), called Secure Backbone AS (SBAS). While SBAS appears as one AS to the Internet, it is a federated network where routes are exchanged between participants using a secure backbone. SBAS makes BGP announcements for its customers' IP prefixes at multiple locations (referred to as Points of Presence or PoPs) allowing traffic from non-participating hosts to be routed to a nearby SBAS PoP (where it is then routed over the secure backbone to the true prefix owner). In this manner, we are the first to integrate a federated secure non-BGP routing backbone with the BGP-speaking Internet. We present a real-world deployment of our architecture that uses SCIONLab to emulate the secure backbone and the PEERING framework to make BGP announcements to the Internet. A combination of real-world attacks and Internet-scale simulations shows that SBAS substantially reduces the threat of routing attacks. Finally, we survey network operators to better understand optimal governance and incentive models.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st USENIX Security Symposium, Security 2022
PublisherUSENIX Association
Pages2601-2618
Number of pages18
ISBN (Electronic)9781939133311
StatePublished - 2022
Event31st USENIX Security Symposium, Security 2022 - Boston, United States
Duration: Aug 10 2022Aug 12 2022

Publication series

NameProceedings of the 31st USENIX Security Symposium, Security 2022

Conference

Conference31st USENIX Security Symposium, Security 2022
Country/TerritoryUnited States
CityBoston
Period8/10/228/12/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Creating a Secure Underlay for the Internet'. Together they form a unique fingerprint.

Cite this