TY - GEN
T1 - Covering CSPs
AU - Dinur, Irit
AU - Kol, Gillat
PY - 2013
Y1 - 2013
N2 - We study the covering complexity of constraint satisfaction problems (CSPs). The covering number of a CSP instance C, denoted v(C), is the smallest number of assignments to the variables, such that each constraint is satisfied by at least one of the assignments. This covering notion describes situations in which we must satisfy all the constraints, and are willing to use more than one assignment to do so. At the same time, we want to minimize the number of assignments. We study the covering problem for different constraint predicates. We first observe that if the predicate contains an odd predicate, then it is covered by any assignment and its negation. In particular, 3CNF and 3LIN, that are hard in the max-CSP sense, are easy to cover. However, the covering problem is hard for predicates that do not contain an odd predicate: 1. For the 4LIN predicate, it is NP-hard to decide if a given instance C has v(C) at most 2, or v(C) is super-constant. 2. (a) We propose a framework of covering dictatorship tests. We design and analyze such a dictatorship test for every predicate that supports a pair wise independent distribution. (b) We introduce a covering unique games conjecture, and use it to convert the covering dictatorship tests into conditional hardness results. 3. Finally, we study a hypothesis about the hardness of covering random instances that is similar to Feige's R3SAT hypothesis. We show the following somewhat surprising implication: If our hypothesis holds for dense enough instances, then it is hard to color an O(1)-colorable hyper graph with a polynomial number of colors.
AB - We study the covering complexity of constraint satisfaction problems (CSPs). The covering number of a CSP instance C, denoted v(C), is the smallest number of assignments to the variables, such that each constraint is satisfied by at least one of the assignments. This covering notion describes situations in which we must satisfy all the constraints, and are willing to use more than one assignment to do so. At the same time, we want to minimize the number of assignments. We study the covering problem for different constraint predicates. We first observe that if the predicate contains an odd predicate, then it is covered by any assignment and its negation. In particular, 3CNF and 3LIN, that are hard in the max-CSP sense, are easy to cover. However, the covering problem is hard for predicates that do not contain an odd predicate: 1. For the 4LIN predicate, it is NP-hard to decide if a given instance C has v(C) at most 2, or v(C) is super-constant. 2. (a) We propose a framework of covering dictatorship tests. We design and analyze such a dictatorship test for every predicate that supports a pair wise independent distribution. (b) We introduce a covering unique games conjecture, and use it to convert the covering dictatorship tests into conditional hardness results. 3. Finally, we study a hypothesis about the hardness of covering random instances that is similar to Feige's R3SAT hypothesis. We show the following somewhat surprising implication: If our hypothesis holds for dense enough instances, then it is hard to color an O(1)-colorable hyper graph with a polynomial number of colors.
KW - Covering Number
KW - PCP
KW - Unique Games Conjecture
UR - http://www.scopus.com/inward/record.url?scp=84885625829&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885625829&partnerID=8YFLogxK
U2 - 10.1109/CCC.2013.29
DO - 10.1109/CCC.2013.29
M3 - Conference contribution
AN - SCOPUS:84885625829
SN - 9780769549972
T3 - Proceedings of the Annual IEEE Conference on Computational Complexity
SP - 207
EP - 218
BT - Proceedings - 2013 IEEE Conference on Computational Complexity, CCC 2013
T2 - 2013 IEEE Conference on Computational Complexity, CCC 2013
Y2 - 5 June 2013 through 7 June 2013
ER -