Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes

Jehan F. Rihani, Reed M. Maxwell, Fotini K. Chow

Research output: Contribution to journalArticlepeer-review

75 Scopus citations

Abstract

This work investigates the role of terrain and subsurface heterogeneity on the interactions between groundwater dynamics and land surface energy fluxes using idealized simulations. A three-dimensional variably saturated groundwater code (ParFlow) coupled to a land surface model (Common Land Model) is used to account for both vertical and lateral water and pressure movement. This creates a fully integrated approach, coupling overland and subsurface flow while having an explicit representation of the water table and all land surface processes forced by atmospheric data. Because the water table is explicitly represented in these simulations, regions with stronger interaction between water table depth and the land surface energy balance (known as critical zones) can be identified. This study uses simple terrain and geologic configurations to demonstrate the importance of lateral surface and subsurface flows in determining land surface heat and moisture fluxes. Strong correlations are found between the land surface fluxes and water table depth across all cases, including terrain shape, subsurface heterogeneity, vegetation type, and climatological region. Results show that different land forms and subsurface heterogeneities produce very different water table dynamics and land surface flux responses to atmospheric forcing. Subsurface formation and properties have the greatest effect on the coupling between the water table and surface heat and moisture fluxes. Changes in landform and land surface slope also have an effect on these interactions by influencing the fraction of rainfall contributing to overland flow versus infiltration. This directly affects the extent of the critical zone with highest coupling strength along the hillside. Vegetative land cover, as seen in these simulations, has a large effect on the energy balance at the land surface but a small effect on streamflow and water table dynamics and thus a limited impact on the land surface-subsurface interactions. Although climate forcing has a direct effect on water table dynamics and feedbacks to the land surface, in this study it does not overcome that of subsurface heterogeneity and terrain.

Original languageEnglish (US)
Article numberW12523
JournalWater Resources Research
Volume46
Issue number12
DOIs
StatePublished - 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Water Science and Technology

Fingerprint Dive into the research topics of 'Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes'. Together they form a unique fingerprint.

Cite this