Abstract
We present and review coupled two-way clustering, a method designed to mine gene expression data. The method identifies submatrices of the total expression matrix, whose clustering analysis reveals partitions of samples (and genes) into biologically relevant classes. We demonstrate, on data from colon and breast cancer, that we are able to identify partitions that elude standard clustering analysis.
Original language | English (US) |
---|---|
Pages (from-to) | 1079-1089 |
Number of pages | 11 |
Journal | Bioinformatics |
Volume | 19 |
Issue number | 9 |
DOIs | |
State | Published - Jun 12 2003 |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Biochemistry
- Molecular Biology
- Computer Science Applications
- Computational Theory and Mathematics
- Computational Mathematics