Coupled model for liquid lithium plasma facing components

Andrei Khodak, Eric Emdee, Robert Goldston, Rajesh Maingi

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Numerical analysis provides the design choice and operating window of liquid metal Plasma Facing Components (PFC) concepts. Coupled analysis of boundary plasma together with the surrounding boundary structures is required. To achieve this goal, PPPL is developing a comprehensive multi-physics model for modeling of PFCs in fusion devices. The model includes the fluid-kinetic code SOLPS-ITER and the flow and heat transfer code CFX from ANSYS. SOLPS-ITER was augmented with a liquid metal boundary condition algorithm, allowing direct two-way coupling of the plasma analysis with the two-dimensional analytical slab flow model which includes heat convection in the liquid metal PFC. The target heat flux resulting from this coupled analysis is used as a boundary condition for detailed 3D Computational Fluid Dynamics (CFD) Magneto Hydro Dynamics (MHD) and heat transfer analysis. A new formulation of MHD equations is introduced in the numerical procedure ensuring current conservation of the discretized equations. Results of the 3D analysis are used for final validation of the coupled model. A PFC design where a porous wall is used to stabilize the liquid metal surface, while MHD drive is used to push the liquid metal flow inside the PFC, will be investigated in the regimes where vapor shielding is created for enhanced volumetric plasma heat dissipation.

Original languageEnglish (US)
Article number114651
JournalFusion Engineering and Design
Volume207
DOIs
StatePublished - Oct 2024

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Nuclear Energy and Engineering
  • General Materials Science
  • Mechanical Engineering

Keywords

  • High heat flux
  • Liquid lithium
  • Numerical analysis
  • Plasma facing components

Fingerprint

Dive into the research topics of 'Coupled model for liquid lithium plasma facing components'. Together they form a unique fingerprint.

Cite this