Abstract
This work assesses the feasibility of applying a Coupled Fenton-Denitrification (CFD) process for the treatment of wastewater from a coking plant. This highly toxic effluent is characterized by comparable carbon and nitrogen contents and it is usually released into the treatment system at well above room temperature. Recalcitrant organic matter can be easily removed in a first step using Fenton treatment. Working at 50 °C, pH0: 3, and a wastewater obtained from a coking plant, the stoichiometric amount of H2O2 relative to COD and a H2O2/Fe2+ weight ratio of 50, around 60% of carbon load was mineralized whereas H2O2 was completely depleted. However, no changes were observed in the total nitrogen content. A subsequent denitrification stage led to an additional 80% TOC (overall above 90%) and 75% Total Nitrogen removal. This was done in a batch bioreactor at room temperature over 72 h, using a 40-day pre-acclimated denitrifying biomass. These results point to the possibility of designing a combined chemical oxidation and biological treatment to deal with complex effluents containing refractory organic matter including high concentrations of nitrogen species.
Original language | English (US) |
---|---|
Pages (from-to) | 653-657 |
Number of pages | 5 |
Journal | Chemosphere |
Volume | 224 |
DOIs | |
State | Published - Jun 2019 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- Public Health, Environmental and Occupational Health
- Pollution
- Health, Toxicology and Mutagenesis
- Environmental Engineering
- Environmental Chemistry
Keywords
- Coking plant
- Denitrification
- Fenton
- Wastewater