Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data

Takashi Hamana, Masato Shirasaki, Satoshi Miyazaki, Chiaki Hikage, Masamune Oguri, Surhud More, Robert Armstrong, Alexie Leauthaud, Rachel Mandelbaum, Hironao Miyatake, Atsushi J. Nishizawa, Melanie Simet, Masahiro Takada, Hiroaki Aihara, James Bosch, Yutaka Komiyama, Robert Lupton, Hitoshi Murayama, Michael A. Strauss, Masayuki Tanaka

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC) first-year data, and derive cosmological constraints based on a blind analysis. The HSC first-year shape catalog is divided into four tomographic redshift bins ranging from z = 0.3 to 1.5 with equal widths of z = 0.3. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and 2.4 arcmin-2 from the lowest to highest redshifts, respectively. We adopt the standard TPCF estimators, ±, for our cosmological analysis, given that we find no evidence of significant B-mode shear. The TPCFs are detected at high significance for all 10 combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-tonoise ratio of 19 in the angular ranges adopted in the cosmological analysis, 7′ < θ < 56′ for θ+ and 28′ < θ < 178′ for θ-. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat cold dark matter model, we find S8 = s8m/0.3 = 0.804±00.032 029, and m = 0.346+0.052 -0.100. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints.

Original languageEnglish (US)
Article number16
JournalJournal of Biochemistry
Volume166
Issue number4
DOIs
StatePublished - Oct 1 2019

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology

Keywords

  • cosmological parameters
  • cosmology: observations
  • dark matter
  • large-scale structure of universe

Fingerprint

Dive into the research topics of 'Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data'. Together they form a unique fingerprint.

Cite this