TY - JOUR
T1 - Cosmic-Ray Transport in Simulations of Star-forming Galactic Disks
AU - Armillotta, Lucia
AU - Ostriker, Eve C.
AU - Jiang, Yan Fei
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
PY - 2021/11/20
Y1 - 2021/11/20
N2 - Cosmic-ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we postprocess a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic-ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple, purely diffusive formalism with constant scattering coefficient, to a physically motivated model in which the scattering coefficient is set by the critical balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of ∼1 GeV (high-energy) and ∼30 MeV (low energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density hot phase, while diffusion and streaming are more important in higher-density, cooler phases. Our physically motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density nH ∼ 0.01 cm-3. The ion-neutral damping of Alfvén waves results in strong diffusion and nearly uniform cosmic-ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.
AB - Cosmic-ray transport on galactic scales depends on the detailed properties of the magnetized, multiphase interstellar medium (ISM). In this work, we postprocess a high-resolution TIGRESS magnetohydrodynamic simulation modeling a local galactic disk patch with a two-moment fluid algorithm for cosmic-ray transport. We consider a variety of prescriptions for the cosmic rays, from a simple, purely diffusive formalism with constant scattering coefficient, to a physically motivated model in which the scattering coefficient is set by the critical balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We separately focus on cosmic rays with kinetic energies of ∼1 GeV (high-energy) and ∼30 MeV (low energy), respectively important for ISM dynamics and chemistry. We find that simultaneously accounting for advection, streaming, and diffusion of cosmic rays is crucial for properly modeling their transport. Advection dominates in the high-velocity, low-density hot phase, while diffusion and streaming are more important in higher-density, cooler phases. Our physically motivated model shows that there is no single diffusivity for cosmic-ray transport: the scattering coefficient varies by four or more orders of magnitude, maximal at density nH ∼ 0.01 cm-3. The ion-neutral damping of Alfvén waves results in strong diffusion and nearly uniform cosmic-ray pressure within most of the mass of the ISM. However, cosmic rays are trapped near the disk midplane by the higher scattering rate in the surrounding lower-density, higher-ionization gas. The transport of high-energy cosmic rays differs from that of low-energy cosmic rays, with less effective diffusion and greater energy losses for the latter.
UR - http://www.scopus.com/inward/record.url?scp=85120410410&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120410410&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac1db2
DO - 10.3847/1538-4357/ac1db2
M3 - Article
AN - SCOPUS:85120410410
SN - 0004-637X
VL - 922
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 11
ER -