Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements

Charles D. Kopec, Jeffrey C. Erlich, Bingni W. Brunton, Karl Deisseroth, Carlos D. Brody

Research output: Contribution to journalArticle

29 Scopus citations

Abstract

Neural activity in frontal cortical areas has been causally linked to short-term memory (STM), but whether this activity is necessary for forming, maintaining, or reading out STM remains unclear. In rats performing a memory-guided orienting task, the frontal orienting fields in cortex (FOF) are considered critical for STM maintenance, and during each trial display a monotonically increasing neural encoding for STM. Here, we transiently inactivated either the FOF or the superior colliculus and found that the resulting impairments in memory-guided orienting performance followed a monotonically decreasing time course, surprisingly opposite to the neural encoding. A dynamical attractor model in which STM relies equally on cortical and subcortical regions reconciled the encoding and inactivation data. We confirmed key predictions of the model, including a time-dependent relationship between trial difficulty and perturbability, and substantial, supralinear, impairment following simultaneous inactivation of the FOF and superior colliculus during memory maintenance. Kopec et al. use transient optogenetic inactivation during memory-guided orienting to show that a simple attractor network model, distributed across cortex and the superior colliculus, can account for both monotonically increasing neural encoding and monotonically decreasing behavioral effects of inactivation.

Original languageEnglish (US)
Pages (from-to)367-377
Number of pages11
JournalNeuron
Volume88
Issue number2
DOIs
StatePublished - Oct 21 2015

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements'. Together they form a unique fingerprint.

  • Cite this