TY - JOUR
T1 - Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers
AU - Nikolka, Mark
AU - Hurhangee, Michael
AU - Sadhanala, Aditya
AU - Chen, Hu
AU - McCulloch, Iain
AU - Sirringhaus, Henning
N1 - Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/10
Y1 - 2018/10
N2 - Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.
AB - Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.
KW - charge transport
KW - disorder
KW - field-effect transistors
KW - organic electronics
UR - http://www.scopus.com/inward/record.url?scp=85038028334&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038028334&partnerID=8YFLogxK
U2 - 10.1002/aelm.201700410
DO - 10.1002/aelm.201700410
M3 - Article
AN - SCOPUS:85038028334
SN - 2199-160X
VL - 4
JO - Advanced Electronic Materials
JF - Advanced Electronic Materials
IS - 10
M1 - 1700410
ER -