Correlated topological flat bands in rhombohedral graphite

Hongyun Zhang, Qian Li, Michael G. Scheer, Renqi Wang, Chuyi Tuo, Nianlong Zou, Wanying Chen, Jiaheng Li, Xuanxi Cai, Changhua Bao, Ming Rui Li, Ke Deng, Kenji Watanabe, Takashi Taniguchi, Mao Ye, Peizhe Tang, Yong Xu, Pu Yu, Jose Avila, Pavel DudinJonathan D. Denlinger, Hong Yao, Biao Lian, Wenhui Duan, Shuyun Zhou

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su-Schrieffer- Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence. Moreover, upon in situ electron doping, the surface TFBs show a splitting with exotic doping evolution, with an order-of-magnitude increase in the bandwidth of the lower split band, and pinning of the upper band near the Fermi level. These experimental observations together with Hartree-Fock calculations suggest that correlation effects are important in this system. Our results demonstrateRGas a platform for investigating the rich interplay between nontrivial band topology, correlation effects, and interactiondriven symmetry-broken states.

Original languageEnglish (US)
Article numbere2410714121
JournalProceedings of the National Academy of Sciences of the United States of America
Volume121
Issue number43
DOIs
StatePublished - Oct 22 2024

All Science Journal Classification (ASJC) codes

  • General

Keywords

  • correlated efffects
  • helical Dirac nodal lines
  • rhombohedral graphite
  • topological flat bands

Fingerprint

Dive into the research topics of 'Correlated topological flat bands in rhombohedral graphite'. Together they form a unique fingerprint.

Cite this